Final Review Sheet

Greg Cordts

December 19, 2009

1 Review Material

1.1 Integration By Parts

Select a f, dg. Then $fg - \int g * df$

1.2 Trig Formulas

 $\sin(2A) = 2\sin A\cos A$

1.3 Directional Derivative

If \vec{u} is a unit vector:

$$f_{\vec{u}}(a,b) = f_x(a,b)u_1 + f_y(a,b)u_2$$

1.4 Extreme Value Theorem

f has a global max, min in region R iff:

- f(x,y) continuous
- R is closed
- R is bounded

2 Non-Cartesian Coordinates

2.1 Polar Coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$x^{2} + y^{2} = r^{2}$$
$$dA = r dr d\theta = r d\theta dr$$

2.2 Cylindrical Coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$
$$x^{2} + y^{2} = r^{2}$$
$$dV = rdrd\theta dz$$

2.3 Spherical Coordinates

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$
$$x^2 + y^2 + z^2 = \rho^2$$
$$dV = \rho^2 \sin \phi d\rho d\phi d\theta$$

3 New Material

3.1 Flow Lines

A flow line is a path $\vec{r}(t)$ whose velocity vector equals \vec{v} .

$$\vec{r}'(t) = \vec{v} = \vec{F}(\vec{r}(t))$$

3.2 Parameterization

3.2.1 Parameterization of a Line

$$x = x_0 + at, y = y_0 + bt, z = z_0 + ct$$

when parallel to vector $a\vec{i} + b\vec{j} + c\vec{k}$

3.2.2 Length of a Curve

$$Length(C) = \int_a^b \|\vec{v}\| \, dt$$

3.3 Vector Fields

3.3.1 Definition

A vector field in *n*-space is a function $\vec{F}(x,...)$ whose value at a point is an *n*-dimensional vector.

3.4 Line Integrals

3.4.1 Formula

Second p

$$\int_C \vec{F} \cdot d\vec{r}$$

For a smooth parameterization:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{v}(t) dt$$

3.4.2 Significance

Force Field Line integral is total work

Oriented Closed curve Line integral is circulation

3.4.3 Fundamental Theorem of Calculus

If C is piecewise smooth and orinted starting at P, ending at Q, and if f is a function whose gradient is continuous on C:

$$\int_{C} \nabla f \cdot d\vec{r} = f(Q) - f(P)$$

3.5 Path Independence

Path indpt if any piecewise, smooth path between two points has the same value.

Continuous \vec{F} is path indpt iff:

 $\bullet \ \vec{F}$ is a gradient field.

Vector field path indpt iff $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed curve C.

If $\vec{F} = \nabla f$, f is the **potential function** of \vec{F} .

3.6 Curl (Green's Theorem)

If \vec{F} is a gradient field with continous partial derivatives, and if C is closed, its scalar curl is 0.

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{R} \underbrace{\left(\frac{\delta F_{2}}{\delta x} - \frac{\delta F_{1}}{\delta y}\right)}_{\text{scalar curl}} dxdy$$

3.7 Flux Integral

$$\vec{A} = A\vec{n}$$

$$\int_{S} \vec{F} \cdot d\vec{A}$$

3.7.1 For a surface z = f(x, y)

$$\int_{R} \vec{F}(x, y, f(x, y)) \cdot (-f_x \vec{i} - f_y \vec{j} + \vec{k}) dxdy$$

3.7.2 For a cylinder, oriented away from z-axis

$$\int_{z_i}^{z_f} \int_{\theta_i}^{\theta_f} \vec{F}(R, \theta, z) \cdot (\cos \theta \vec{i} + \sin \theta \vec{j}) R \, d\theta dz$$

3.7.3 For a Parameterization

$$\int_{R} \vec{F}(\vec{r}(s,t)) \cdot \left(\frac{\delta \vec{r}}{\delta s} \times \frac{\delta \vec{r}}{\delta t} \right) ds dt$$

Surface area:

$$\int_{R} \left\| \frac{\delta \vec{r}}{\delta s} \times \frac{\delta \vec{r}}{\delta t} \right\| \, ds dt$$

3.8 Divergence

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\delta F_1}{\delta x} + \frac{\delta F_2}{\delta y} + \frac{\delta F_3}{\delta z}$$

3.8.1 Divergence Theorem

If W is solid, has boundry S outward (closed, piecewise, smooth), and F smooth vector field on open region contianing W, S.

$$\int_{S} \vec{F} \cdot d\vec{A} = \int_{W} \operatorname{div} \vec{F} \, dV$$